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Abstract
The Maxwell–Bloch equations are represented as the equation of motion for a
continuous chain of coupled C Neumann oscillators on the three-dimensional
sphere. This description enables us to find new Hamiltonian and Lagrangian
structures of the Maxwell–Bloch equations. The symplectic structure contains
a topologically non-trivial magnetic term which is responsible for the coupling.
The coupling forces are geometrized by means of an analogue of Kaluza–Klein
theory. The conjugate momentum of the additional degree of freedom is
precisely the speed of light in the medium. It can also be thought of as the
strength of the coupling. The Lagrangian description has a structure similar to
that of the Wess–Zumino–Witten–Novikov action. We describe two families
of solutions of the Maxwell–Bloch equations which are expressed in terms of
the C Neumann system. One family describes travelling non-linear waves
whose constituent oscillators are the C Neumann oscillators in the same way as
the harmonic oscillators are the constituent oscillators of the harmonic waves.
The 2π -pulse soliton is a member of this family.

PACS numbers: 02.30.Jr, 02.30.Xx, 02.20.Tw, 42.65.Sf
Mathematics Subject Classification: 37K05, 35Q60, 37K30, 35Q58, 53D20

1. Introduction

The Maxwell–Bloch equations are a well-known system of partial differential equations used
in non-linear optics. Roughly speaking, these equations are a semi-classical model of the
resonant interaction between light and an active optical medium consisting of two-level atoms.
We will consider the following form of the Maxwell–Bloch equations without pumping or
broadening:

Et + cEx = P − αE, Pt = ED − βP, Dt = − 1
2 (EP + EP) − γ (D − 1). (1)
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The independent variables x and t parametrize one spatial dimension and the time, the complex-
valued functions E(t, x) and P(t, x) describe the slowly varying envelopes of the electric field
and the polarization of the medium, respectively, and the real-valued function D describes the
level inversion. The constant c is the speed of light in the medium, α represents the losses of
the electric field, while β is the longitudinal and γ the transverse relaxation rate in the medium.
In our paper we shall assume that α = γ = 0. We shall consider the spatially periodic case
of (1). The Maxwell–Bloch equations are an integrable system (see [1–4]). In particular, they
satisfy the zero curvature condition.

The other integrable system which figures in this paper is the C Neumann system. The
C Neumann system describes the motion of a particle on the n-dimensional sphere Sn under
the influence of the force whose potential is quadratic. This oscillator was first described in
the 19th century by Carl Neumann in [5]. More recently, many authors studied its different
geometrical aspects. See [6–8] and many other texts. We will show that there is an interesting
relationship between the Maxwell–Bloch equations and the C Neumann oscillator. Results of
this paper are motivated by this relationship.

The Hamiltonian system (T ∗SU(2), ωc,Hcn), where the function Hcn: T ∗SU(2) → R is
given by

Hcn(q, pq) = 1
2‖pq‖2 + Tr(σ · Adq(τ )), σ, τ ∈ su(2), (2)

describes the C Neumann oscillator moving on the 3-sphere S3 = SU(2). The force potential is
given by a quadratic form on R

4 whose 4×4 symmetric matrix has two double eigenvalues. Our
theorem 1 claims that the Maxwell–Bloch equations describe a continuous chain of interacting
C Neumann oscillators of the above type. The oscillators in the chain are parametrized by the
spatial dimension of the Maxwell–Bloch equations and the interaction between the oscillators
is of magnetic type. By this we mean that the acceleration of a given oscillator is influenced
by the velocity and not by the position of the neighbouring oscillators. More concretely,
the Maxwell–Bloch equations (1) are the equations of motion for the Hamiltonian system
(T ∗LSU(2), ωc + cωm,Hmb). Here LSU(2) = {g: S1 → SU(2)} is the loop group of SU(2)

and the Hamiltonian function Hmb: T ∗LSU(2) → R is given by

Hmb(g, pg) =
∫

S1

(
1

2
‖pg(x)‖2 + Tr(σ · Adg(x)(τ (x)))

)
dx.

We see that the Hamiltonian is precisely the total energy of our chain of the C Neumann
oscillators parametrized by x ∈ S1. The symplectic form ωc + cωm is a perturbation of the
canonical form ωc. The perturbation term ωm is the natural pull-back of the 2-form �m on
LSU(2) which is right invariant on LSU(2) and whose value at the identity e ∈ LSU(2) is
given by

�m(ξ, η) =
∫

S1
Tr(ξ ′(x) · η(x)) dx, ξ(x), η(x) ∈ Lsu(2) = TeLSU(2).

The term ωm is responsible for the magnetic-type interaction among the neighbouring
oscillators in our chain.

At the level of the equations of motion, the relationship between the C Neumann system
and the Maxwell–Bloch equations is reflected in the following. The equation of motion of the
C Neumann system (T ∗SU(2), ωc,Hcn) is

(gtg
−1)t = [σ, Adg(τ )]; g(t) : I −→ SU(2),

while the Maxwell–Bloch equations can be rewritten in the form

(gtg
−1)t + c(gtg

−1)x = [σ, Ad(τ (x)]; g(t, x): I −→ SU(2). (3)
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More precisely, the above equation is equivalent to the system (1), if we impose the constraint
Tr(gtg

−1 · σ) = const. The rewriting (3) shows clearly that the stationary (time-independent)
solutions of the Maxwell–Bloch equations are solutions of our C Neumann equation. In this
paper, we consider equation (3) without the constraint. This makes the discussion easier and
clearer. In addition, we believe that equation (3), being a description of a chain of oscillators,
is interesting in itself.

A more interesting illustration of the relationship between the Maxwell–Bloch equations
and the C Neumann system is provided by the solutions of the former given in
proposition 3. These solutions are the non-linear travelling waves whose constituent oscillator
is the C Neumann oscillator in the same way as the harmonic oscillator is the constituent
oscillator of the harmonic waves. More precisely, the constituent oscillator turns out to be the
electrically charged spherical pendulum moving in the field of the magnetic monopole which
is positioned at the centre of the sphere. For small oscillations of the spherical pendulum, our
solutions indeed behave similarly as the harmonic waves. (Indeed, the linearization around the
stable equilibrium of our equation yields the harmonic waves.) But we show in section 4 that
the famous 2π -pulse soliton is a particular case of the solutions given in proposition 3. This
solution occurs when the constituent oscillator becomes the planar gravitational pendulum. In
addition, its energy must be the energy of the separatrix of the pendulum’s phase portrait.

The difference between the symplectic structure of a Hamiltonian system and the canonical
structure is called the magnetic term. The momentum shifting argument (see e.g. [9] or [10])
tells us that the magnetic term is responsible for a force which depends linearly on the
momenta. An example is the Lorentz force of a magnetic field acting on a moving charged
particle. Geometrization of such forces can be achieved by analogues of the Kaluza–Klein
theory. This approach provides the configuration space in which the motion of a charged
particle under the influence of the magnetic force is described by the geodesic motion. In
Hamiltonian terms, this means that the relevant symplectic structure will be canonical. The
geometrization is achieved by the introduction of an additional circular degree of freedom.
The extended configuration space is thus a U(1)-bundle over the original configuration space.
A key role is played by the connection which is given on this bundle and whose curvature
is precisely the magnetic term. In symplectic geometry, the procedure of adding degrees
of freedom and their conjugate momenta is called the symplectic reconstruction—a process
inverse to the symplectic reduction. Symplectic reconstruction was studied e.g. in [9, 11, 12].
In the case of the Lorentz force, the moment conjugate to the (single) additional dimension is
precisely the electric charge of the moving particle. Therefore, the new momentum is usually
called the charge. We shall see that in the case of the Maxwell–Bloch equations the role of
the Kaluza–Klein charge is taken by the speed of light.

In our case, the magnetic term ωm is not exact. The class [�m] is a non-zero element in the
cohomology group H 2(LSU(2)). In such cases, the idea of the Kaluza–Klein geometrization
has to be used with some care. It can be performed only when the magnetic term is an integral
2-form. This follows from a well-known theorem of A Weil. Our proposition 5 claims that,
in general, whenever the magnetic term σm of a system (T ∗N,ωc + σm,H) is integral, there
exists the extended Hamiltonian system (T ∗M,�c, H̃ ) whose configuration space is the total
space of a U(1)-bundle M → N . The extended system is invariant with respect to the natural
U(1)-action and (T ∗N,ωc + σm,H) is its symplectic quotient. The class [σm] ∈ H 2

DR(N) is
the Chern class of M → N . Our theorem 2 describes the Kaluza–Klein description of the
Maxwell–Bloch system. Let L̃SU(2) be the central extension of the loop group LSU(2). Let
the Hamiltonian function H̃ of the system (T ∗L̃SU(2),�c, H̃ mb) be

H̃ mb(g̃, pg̃) = 1

2
‖pg̃‖2 +

∫
S1

Tr
(
σ · Adg̃(τ (x))

)
dx,
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where ‖pg̃‖ is given by the natural metric on the central extension L̃su(2) = Lsu(2) ⊕ R.
Then this system is invariant with respect to the natural U(1)-action. Its symplectic
quotient at the level c of the momentum map is the Maxwell–Bloch Hamiltonian system
(T ∗LSU(2), ωc + cωm,Hmb) on LSU(2). We note that S1 → L̃SU(2) → LSU(2) is a
non-trivial U(1)-bundle whose first Chern class is [�m] ∈ H 2(LSU(2)). The charge in
the Kaluza–Klein description (T ∗L̃SU(2),�c, H̃ mb) of the Maxwell–Bloch system has a
clear physical interpretation. It is precisely the speed of light in the medium in question.
Alternatively, it can be thought of as the strength of the coupling among the neighbouring C
Neumann oscillators.

The situation described above is reminiscent of the following finite-dimensional one.
Let (T ∗SU(2),�c,Hcn) be the C Neumann system on SU(2) = S3, with the Hamiltonian
given by (2). This system is invariant with respect to the U(1)-action which arises from
the Hopf fibration S1 ↪→ S3 → S2 given by g → Adg(τ ). The symplectic quotient is
(T ∗S2, ωc + ωm,Hsp), where

Hsp(q, pq) = 1
2‖pq‖2 + Tr(σ · q)

and ωm is the pull-back of the volume form �m on S2. This system describes the spherical
pendulum in the magnetic field of the Dirac monopole situated at the centre of S2. The form
[�m] ∈ H 2(S2) is the first Chern class of the Hopf fibration. This construction is described in
more detail in [13] and in greater generality in [14].

An important merit of the Kaluza–Klein approach lies in the fact that it clarifies the
otherwise elusive Lagrangian description of the systems with non-trivial magnetic terms. In
theorem 3, we give the Lagrangian expression of the Maxwell–Bloch system on the extended
configuration space L̃SU(2). The proof is a straightforward application of the Legendre
transformation. We stress the fact that the Lagrangian description of a solution, which is
not periodic in time, is possible only on the extended configuration space. The presence of
the topologically non-trivial magnetic term makes the Lagrangian description on the primary
configuration space LSU(2) more involved. This description is given in theorem 4. The
Lagrangian has a structure similar to that of the Wess–Zumino–Witten–Novikov Lagrangian.
In particular, it is well defined only for those solutions of the Maxwell–Bloch equations which
are temporally periodic. We note that the results and proofs of section 5 hold with only minor
notational changes for a general Hamiltonian system with a non-trivial (but integral) magnetic
term.

Throughout this paper, the group SU(2) can be replaced by any compact semi-simple
Lie group G. Thus, our construction yields a family of integrable infinite-dimensional systems
(T ∗LG,ωc + cωm,Hgmb) which satisfy the zero-curvature condition. All these integrable
systems are systems with the non-trivial magnetic term ωm ∈ �2(LG) and with the geometric
phase.

The rewriting (3) of the Maxwell–Bloch equations is already used in the papers [15, 16]1

by Park and Shin. There it is interpreted as an equation of a field theory. The connection
between the principal chiral field theories on the one hand and the Maxwell–Bloch equations,
or more precisely, the self-induced transparency theory of McCall and Hahn, on the other hand,
was already established by Maimistov in [17]. The authors of [15, 16] find the Lagrangian
of the Maxwell–Bloch equations by means of field-theoretic considerations. Our WZWN-
type Lagrangian from theorem 4 is essentially the same as the one found by Park and Shin.
The only difference is that we consider the unconstrained equation (3), while Park and Shin
take the constraint Tr(gtg

−1 · σ) = const into account. They very elegantly and ingeniously

1 References [15, 16] were brought to the author’s attention by the referees after the submission of this paper. The
author was previously not aware of the existence of these two important papers.
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subsume this constraint into the U(1)-gauging part of the WZWN theory. The rewriting (3)
enables Park and Shin to describe many important features of the Maxwell–Bloch equations,
including soliton numbers, conserved topological and non-topological charges, as well as
certain symmetry issues. In [16], they also show that the above-mentioned generalizations
of equation (3) to Lie groups G other than SU(2) are, in some cases, relevant to the theory
of the resonant light–matter interaction. In particular, they show explicitly that various non-
degenerate and degenerate two- and three-level light–matter systems can be described by
equation (3) with the appropriate choice of the group G and of the constant τ . Certain
choices of these two constants give rise to the systems whose configuration spaces are
supported on symmetric spaces of the form G/H , where H ⊂ G is a suitable subgroup.
In terms of our Hamiltonian description, these systems are precisely the symplectic quotients
of (T ∗LG,ωc + cωm,Hgmb) with respect to the natural action of LH .

2. A rewriting of the Maxwell–Bloch system

In this section we shall express the Maxwell–Bloch equations in a form which will reveal their
connection with the C Neumann system.

Let the functions E(t, x) and P(t, x) be complex valued and let the values of D(t, x) be
real. We shall consider the Maxwell–Bloch equations

Et + cEx = P, Pt = ED − βP, Dt = − 1
2 (EP + EP), (4)

with spatially periodic boundary conditions:

E(t, x + 2π) = E(t, x), P (t, x + 2π) = P(t, x), D(t, x + 2π) = D(t, x). (5)

The system (4) can be rewritten in a more compact form. Let the Lie algebra-valued maps
ρ(t, x): R × S1 → su(2) and F(t, x): R × S1 → su(2) be defined as

ρ(t, x) =
(

iD(t, x) iP(t, x)

−iP(t, x) −iD(t, x)

)
, F (t, x) = 1

2

(
iβ E(t, x)

−E(t, x) −iβ

)
. (6)

In terms of these maps, the system (4) acquires the form

ρt = [ρ, F ], Ft + cFx = [ρ, σ ], (7)

where

σ = 1

2

(
i 0
0 −i

)
.

We observe that the equation ρt = [ρ, F ] is of the Lax form. Therefore, we have

ρ(t, x) = Adg(t,x)(τ (x)), F (t, x) = −gt (t, x) · g−1(t, x), (8)

where τ(x): S1 → su(2) and g(t, x): R × S1 → SU(2) are arbitrary smooth matrix-valued
functions. If we insert the above into the second equation of the system (7), we obtain the
following second-order partial differential equation for g(t, x): R × S1 → SU(2):

(gtg
−1)t + c(gtg

−1)x = [σ, Adg(τ (x))]. (9)

This is the new rewriting of the Maxwell–Bloch equations that we shall use in this paper.
Equation (9) is slightly more general than the Maxwell–Bloch equations (4). It is equivalent
to (4), if we add the stipulation

〈gtg
−1, σ 〉 = const = −β.
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We will consider equation (9) as an equation of motion for the group-valued loop g(x)(t) =
g(t, x) ∈ {S1 → SU(2)} = LSU(2), where LSU(2) denotes the loop group of unbased
SU(2) loops. In other words, a solution of equation (9) is a path

g(t, x): I −→ LSU(2), t 
−→ g(t, x).

Then for every choice of the loop τ(x): S1 → su(2), together with a choice of the initial
conditions g(0, x) ∈ LSU(2) and gt (0, x) · g−1(0, x) ∈ Lsu(2), we expect solutions g(t, x)

of (9). By Lsu(2) we denoted the loop algebra Lsu(2) = {τ : S1 → su(2)} which is, of course,
the Lie algebra of LSU(2).

We conclude this section by pointing out that our rewriting of the Maxwell–Bloch equation
yields a whole family of integrable partial differential equations. Let G be an arbitrary semi-
simple Lie group and let g(t, x): I × S1 → G be a smooth map. Let us put c = 1. A
straightforward check gives the proof of the following proposition.

Proposition 1. Let σ ∈ g be an arbitrary element and let τ : S1 → g be a loop in the Lie
algebra g. The equation

(gtg
−1)t + (gtg

−1)x = [σ, Adg(τ (x))]

satisfies the zero-curvature condition:

Vt − Ux + [U,V ] = 0,

where

U = −(−zσ + gtg
−1) and V = −zσ + gtg

−1 − 1

z
Adg(τ ).

3. Hamiltonian structure with the magnetic term

We shall now take a closer look at the equation

(gtg
−1)t + c(gtg

−1)x = [σ, Adg(τ (x))].

Consider first those solutions g(t): I → SU(2) of (9) which are constant with respect to the
x-variable. Clearly, such solutions will exist only in the case when τ(x) ≡ τ is a constant
element in su(2). The Lie group-valued function g(t) will then be a solution of the ordinary
differential equation

gtg
−1 = [σ, Adg(τ )]. (10)

For α, β ∈ su(2), let 〈α, β〉 = − 1
2 Tr(α · β) denote the Killing form on su(2).

Proposition 2. Equation (10) is the equation of motion for the Hamiltonian system
(T ∗SU(2), ωc,Hcn), where the Hamiltonian is given by

Hcn(g, pg) = 1
2‖pg‖2 + 〈σ, Adg(τ )〉 (11)

and ωc is the canonical symplectic form on the cotangent bundle T ∗SU(2) = T ∗S3.
This system is a special case of the C Neumann oscillator on the 3-sphere. In the suitably

chosen Cartesian co-ordinates on R
4, the potential of Hcn assumes the form

〈σ, Adg(�q)(τ )〉 = λ
(
q2

1 + q2
2

) − λ
(
q2

3 + q2
4

)
,

where λ is a positive real number.

Proof. First we shall prove that Hcn is indeed the Hamiltonian of equation (10) with respect
to the canonical symplectic form. Let G be an arbitrary compact semi-simple Lie group and
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T ∗G its cotangent bundle. Let T ∗G ∼= G × g∗ be the trivialization by means of the right
translations. In this trivialization, the canonical simplectic form ωc on T ∗G is given by the
formula

(ωc)(g,pg)((Xb, Xct), (Yb, Yct)) = −〈Xct, Yb〉 + 〈Yct, Xb〉 + 〈pg, [Xb, Yb]〉. (12)

Above, 〈a, x〉 denotes the evaluation of the element a ∈ g∗ on the element x ∈ g. For the
proof see [18].

Let (M,ω,H) be a Hamiltonian system on the symplectic manifold (M,ω). A path
γ (t): I → M is a solution of the equation of motion for our system, if γ̇ (t) = XH (γ (t)),
where XH is the Hamiltonian vector field defined by dH = ω(XH ,−).

For the Hamiltonian given by (11), we have

〈dHcn, (δb, δct)〉 = −〈[σ, Adg(τ )]�, δb〉 +
〈
δct, p

�
g

〉
. (13)

Here �: g → g∗ and �: g∗ → g are defined by α� = 〈α,−〉 and β = 〈β�,−〉. Let us denote
XHcn = (Xb, Xct) ∈ �(T ∗SU(2)) = �(SU(2) × su(2)∗), where we use the trivialization by
the right translations. Then

(ωc)(g,pg)((Xb, Xct), (δb, δct)) = −〈Xct, δb〉 + 〈δct, Xb〉 + 〈pg, [Xb, δb]〉
= 〈−Xct − {Xb, pg}, δb〉 + 〈δct, Xb〉

(14)

and {a, α} denotes the ad∗-action of a ∈ su(2) on α ∈ su(2)∗. Comparing (13) and (14), we
obtain

p�
g = Xb, [σ, Adg(τ )]� = Xct + {Xb, pg}

and from this

Xb = p�
g, Xct = [σ, Adg(τ )]�.

Let γ (t) = (g(t), pg(t)): I → T ∗G be a path and let γ̇ = (gtg
−1, (pg)t ) be its tangent at

(g, pg) expressed in the right trivialization. Then the above equations and (gtg
−1, (pg)t ) =

(Xb, Xct) give us

(gtg
−1)t = [σ, Adg(τ )],

which proves the first part of our proposition.
The proof of the second part is a matter of simple checking. An element g ∈ SU(2) is a

matrix of the form

g =
(

g1 + ig2 g3 + ig4

−g3 + ig4 g1 − ig2

)
, det(g) =

4∑
i=1

g2
i = 1.

Let

τ =
(

ia b + ic
−b + ic −ia

)
.

Then, 〈σ, Adg(τ )〉 is the quadratic form

〈σ, Adg(τ )〉 = −Tr(σgτg−1)

= 2a
(
g2

1 + g2
2 − g2

3 − g2
4

)
+ 4b(−g1g4 + g2g3) + 4c(g1g3 + g2g4)

on R
4 restricted to the sphere SU(2) = S3 ⊂ R

4. The 4 × 4-matrix of this quadratic form has
two double eigenvalues

λ = 2
√

a2 + b2 + c2 and µ = −λ = −2
√

a2 + b2 + c2,

which concludes the proof of the proposition. �
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Let us now return to equation (9):

(gtg
−1)t = −c(gtg

−1)x + [σ, Adg(τ (x))].

This can now be thought of as the equation of motion of a continuous chain of C Neumann
oscillators parametrized by x ∈ S1. At the time t, the position of the x0th oscillator is
g(t, x0) ∈ SU(2) ∼= S3. The above equation can be written in the form

(gtg
−1)t (x) = − c

2ε
(gtg

−1(x − ε) − gtg
−1(x + ε))|ε→0 + [σ, Adg(x)(τ (x)].

For every x, the acceleration of the oscillator g(t, x) is determined by the potential
[σ, Adg(x)(τ (x))] and by the velocities gtg

−1(x ± ε) of the infinitesimally close oscillators.
The interaction of the neighbouring oscillators is of magnetic type. It depends on the velocities
of the particles and not on their positions.

This interpretation of the Maxwell–Bloch equation suggests a Hamiltonian structure. The
configuration space is the space of positions of the continuous C Neumann chains. This is
the space of maps g(x): S1 → SU(2), in other words, the loop group LSU(2). Thus, the
phase space will be the cotangent bundle T ∗LSU(2). The natural choice of the Hamiltonian is
the total energy of all the oscillators:

Hmb(g(x), pg(x)) =
∫

S1

(
1

2
‖pg(x)‖2 + 〈σ, Adg(x)(τ (x))〉

)
dx. (15)

Let ωc now denote the canonical cotangent symplectic structure on T ∗LSU(2). It is easily
seen that the equation of motion of the Hamiltonian system (T ∗LSU(2), ωc,Hcn) is simply
(gtg

−1)t = [σ, Adg(τ (x))]. Therefore, the canonical symplectic form ωc has to be perturbed
by a form which will account for the interaction term (gtg

−1)x .
Let (�m)e be the skew bilinear form on the loop algebra Lsu(2) given by the formula

(�m)e(ξ, η) =
∫

S1
〈ηx, ξ 〉 dx = −

∫
S1

〈ξx, η〉 dx, ξ(x), η(x) ∈ Lsu(2).

This bilinear form is a Lie algebra cocycle. Let �m be the right-invariant 2-form on LSU(2)

whose value at the identity e ∈ LSU(2) is (�m)e. Since (�m)e is a cocycle, the form �m is
closed. Let proj : T ∗LSU(2) → LSU(2) be the natural projection and denote the pull-back
proj ∗(�m) by ωm. The form ωm is then a closed differential 2-form on T ∗LSU(2).

Theorem 1. Let (T ∗LSU(2), ωc + cωm,Hmb) be the Hamiltonian system, where the
Hamiltonian H is given by (15), the form ωc is the canonical cotangent form and ωm is
the form described above. Then the equation of motion is the Maxwell–Bloch equation

(gtg
−1)t + c(gtg

−1)x = [σ, Adg(τ (x))].

Proof. Let ξ(x) and η(x) be two arbitrary elements of the loop Lie algebra Lsu(2). The
inner product on Lsu(2) defined by the formula

〈〈ξ(x), η(x)〉〉 =
∫

S1
〈ξ(x), η(x)〉 dx

is nondegenerate and Ad-invariant with respect to the group LSU(2). By the same symbol we
shall also denote the evaluation 〈〈α, a〉〉 of the element α ∈ Lsu(2)∗ on an element a ∈ Lsu(2),
as well as the induced inner product on Lsu(2)∗. Thus, the Hamiltonian (15) can be written
in the form

Hmb(g, pg) = 1
2‖pg‖2 + 〈〈σ, Adg(τ )〉〉,
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where ‖pg‖2 = 〈〈pg, pg〉〉. The canonical cotangent form on T ∗LSU(2) has the expression
analogous to (12), namely

(ωc)(g,pg)((Xb, Xct), (Yb, Yct)) = −〈〈Xct, Yb〉〉 + 〈〈Yct, Xb〉〉 + 〈〈pg, [Xb, Yb]〉〉, (16)

where (Xb, Xct), (Yb, Yct) is an arbitrary pair of tangent vectors from T(g,pg)(T
∗LSU(2))

written in the right trivialization. The expression of the symplectic form ωc + cωm in this
trivialization is

(ωc + cωm)(g,pg)((Xb, Xct), (Yb, Yct)) = −〈〈Xct, Yb〉〉 + 〈〈Yct, Xb〉〉
+ 〈〈pg, [Xb, Yb]〉〉 − c〈〈(Xb)x, Yb〉〉.

Similarly as in the proof of proposition 2, we have

〈〈dHmb, (δb, δct)〉〉 = −〈〈[σ, Adg(τ )]�, δb〉〉 + 〈〈δct, p
�
g〉〉

and

(ωc + cωm)(g,pg)((Xb, Xct), (δb, δct))

= −〈〈Xct, δb〉〉 + 〈〈δct, Xb〉〉 + 〈〈pg, [Xb, δb]〉〉 − c〈〈(Xb)x, δb〉〉
= 〈〈 − Xct − c(Xb)

�
x − {Xb, pg}, δb

〉〉
+ 〈〈δct, Xb〉〉.

Again, because of the independence of δb and δct, the above two equations give

p�
g = Xb, Xct + c(Xb)

�
x = [σ, Adg(τ )]�. (17)

Solutions of the Hamiltonian system (T ∗LSU(2), ωc + cωm,Hmb) are the paths

γ (t; x) = (g(t; x), pg(t; x)): I −→ T ∗LSU(2) ∼= LSU(2) × (Lsu(2))∗,

which are the integral curves of the Hamiltonian vector field XHmb of the Hamiltonian H. The
condition (gtg

−1, (pg)t ) = (Xb, Xct) and equations (17) finally give

(gtg
−1)t + c(gtg

−1)x = [σ, Adg(τ )],

which proves our theorem. �

It is clear that the above theorem holds if the group SU(2) is replaced by any compact
semi-simple Lie group G. Every such G is endowed with the Killing form 〈−,−〉 and the
cocycle

ωm(ξ, η) = −
∫

S1
〈ξx, η〉, ξ, η ∈ Lg,

on the corresponding loop algebra is well defined. The equation

(gtg
−1)t + c(gtg

−1)x = [σ, Adg(τ (x)]

for g(t, x): I×S1 → G is the equation of motion of the system (T ∗LG,ωc+cωm,Hgmb), where
Hgmb and ωm are defined in the same way as above. (By Hgmb we denoted the Hamiltonian
of the generalized Maxwell–Bloch system.) This system describes a continuous chain of
oscillators on G given by (T ∗G,ωc,Hrs), where

Hrs(g, pg) = 1
2‖pg‖2 + 〈σ, Adg(τ )〉.

These are the well-known integrable systems described by Reymann and Semenov-Tian-
Shansky in [19, 20]. Connection of such systems with Nahm’s equations of the Yang–Mills
theory is studied in [21].
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4. Two families of solutions

In this section we omit the spatial periodicity condition. It will be convenient to work with
the symplectic reduction of our C Neumann system which was already mentioned in the
introduction.

Let us denote the position variable of the C Neumann system (T ∗SU(2), ωc,Hcn) by
h ∈ SU(2). The corresponding equation of motion is

(hth
−1)t = [σ, Adh(τ )]. (18)

This system is invariant with respect to the actions of the circle groups Uτ (1) = {Exp(s · τ)}
and Uσ (1) = {Exp(s · σ)} in SU(2). The action of Uτ (1) is the cotangent lift of the action
(ρτ )u(h) = h · u on SU(2). In [13], we show that the moment map µ: T ∗SU(2) → u(1)∗ is
given by

µ(h, hth
−1) = 〈hth

−1, Adh(τ )〉. (19)

Above, we identified the cotangents and tangents by means of the Riemannian metric and we
shall continue to do so below. The symplectic quotient of (T ∗SU(2), ωc,Hcn) with respect to
ρτ at the level m of the moment map µ is the Hamiltonian system (T ∗S2

τ , ωc + mωdm,Hsp),
where

Hsp(q, pq) = 1
2‖pq‖2 + 〈q, σ 〉.

Here q = Adh(τ ) ∈ S2
τ ⊂ su(2) = R

3. This system describes the charged spherical pendulum
moving on the 2-sphere S2

τ under the influence of the gravitational force potential 〈σ, q〉 and
the Lorentz force caused by the Dirac magnetic monopole positioned at the centre of S2

τ . The
charge of the pendulum is m. This system is described in more detail in [13].

The differentiation qt = [hth
−1, Adh(τ )] = [hth

−1, q] and the fact that the map

[−, q] : TqS
2
τ −→ TqS

2
τ ; v 
−→ [v, q]

is a rotation through π
2 , give us the expression

hth
−1 = −[qt , q] + 〈hth

−1, q〉q = −[qt , q] + mq. (20)

Since 〈hth
−1, σ 〉t = 〈(hth

−1)t , σ 〉, it is now clear from (18) that

�̃m = 〈hth
−1, σ 〉 = 〈−[qt , q] + mq, σ 〉 (21)

is a conserved quantity of our magnetic pendulum. This integral is a perturbation of the
angular momentum 〈[qt , q], σ 〉 of the pendulum with respect to the axis of gravitation. The
perturbation term m〈q, σ 〉 stems from the presence of the magnetic monopole.

Let now

(gtg
−1)t + c(gtg

−1)x = [σ, Adg(τ )] (22)

be the Maxwell–Bloch equation in which τ is a constant element of su(2). Our first family of
solutions describes the waves whose constituent oscillators are the charged spherical pendula
in the field of a magnetic monopole. Let

g(t, x) = h(kx − ωt) = h(s)

take values in SU(2). Then

(gtg
−1)t + c(gtg

−1)x = (ω2 − kωc)(hsh
−1)s .

The map g(t, x) solves the Maxwell–Bloch equation (30) if and only if h(s) is a solution of
the C Neumann equation

(hsh
−1)s =

[(
1

ω2 − ωkc

)
σ, Adh(τ )

]
. (23)
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It is important to note that the solutions g(t, x) = h(kx − ωt) indeed satisfy the constraint
〈gtg

−1, σ 〉 = const. This is insured by the fact that (21) is a conserved quantity. Let us express
the solution g(t, x) = h(kx −ωt) in terms of the original physical quantities of the Maxwell–
Bloch equations, namely in terms of the electrical field E, the polarization of the medium P
and the level inversion D. To this end, it is better to use an appropriate solution of a magnetic
spherical pendulum. If h(s) is a solution of (23), then q(s) = Adh(s)(τ ): I → Sτ ⊂ su(2) is
an evolution of our pendulum. Let us denote

q(s) =
(

iq3(s) q1(s) + iq2(s)

−q1(s) + iq2(s) −iq3(s)

)
= Adh(s)(τ ): I −→ S2

τ ⊂ su(2) ∼= R
3 (24)

and let

�1(s) = q2(s)q̇3(s) − q3(s)q̇2(s), �2(s) = q3(s)q̇1(s) − q1(s)q̇3(s)

be the components of the angular momentum with respect to the two directions perpendicular to
gravity. Formulae (6), (8), (20), (22) and (23) now yield the proof of the following proposition.

Proposition 3. Let

(q1(s), q2(s), q3(s)) : I −→ Sτ ⊂ su(2) = R
3

be a solution of the magnetic spherical pendulum with charge m, and the gravitational potential
equal to

V (q) =
(

1

ω2 − ωkc

)
〈σ, q〉.

The functions

E(t, x) = (�1 − mq1)(ωt − kx) + i(�2 − mq2)(ωt − kx),

P (t, x) = q1(ωt − kx) + iq2(ωt − kx)),

D(t, x) = q3(ωt − kx)

solve the Maxwell–Bloch equations (30).

The above solutions describe a family of non-linear travelling waves. The constituent
oscillators of these waves are the magnetic spherical pendula in the same way as the harmonic
oscillators are the constituent oscillators of the harmonic waves. The phase velocity ω/k of
our waves increases with the increasing gravitational potential V (q). When V (q) approaches
infinity, the velocity of the waves approaches the speed of light c in the medium.

Now we shall show that the famous 2π -pulse solution of the theory of self-induced
transparency appears as a special case of the family described above. Let us consider the
symplectic quotient of our C Neumann system at the zero value of the moment map µ given
by (19). In this case, the reduced system is the usual spherical pendulum (T ∗S2, ωc,Hsp)

without the magnetic monopole. The conserved quantities of this system are the energy Hsp

and the angular momentum �̃(q, qt ) = 〈[qt , q], σ 〉 with respect to the axis of gravitation.
If we have �̃(q, qt ) = 0, this system is reduced to the usual planar gravitational pendulum.
Without the loss of generality, we can take τ = σ and confine the path q given by (24) to the
circle

q(s) =
(

iq3(s) iq2(s)

iq2(s) −iq3(s)

)
: I −→ S1 ⊂ S2

σ ⊂ su(2) ∼= R
3.

If we parametrize this circle by the angle θ
2 , we get the path

q(θ(s)) = Adh(θ(s)) =
(

i cos 2θ(s) i sin 2θ(s)

i sin 2θ(s) −i cos 2θ(s)

)
: I −→ S1. (25)
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In this case, the suitable lift h(θ(s)): I → SU(2) is clearly given by

h(s) =
(

cos θ(s) sin θ(s)

− sin θ(s) cos θ(s)

)
: I −→ U(1) ⊂ SU(2)

and thus

hsh
−1(s) =

(
0 θ ′(s)

θ ′(s) 0

)
: I −→ u(1). (26)

Recall that g(t, x): I × R → U(1) ⊂ SU(2) is a solution of the Maxwell–Bloch equation
if g(t, x) = h(kx − ωt) and h(s) is a solution of the suitable C Neumann oscillator. Let
θ(s): I → R be a solution of the gravitational pendulum whose potential is equal to

V (θ) = −κ2 cos θ =
(

1

ω2 − ωkc

)
cos θ.

Then

E(t, x) = θ ′(ωt − kx), P (t, x) = sin θ(ωt − kx), D(t, x) = cos θ(ωt − kx)

(27)

is a solution of the Maxwell–Bloch equations. This can be seen from equations (6), (8), (25)
and (26).

The gravitational pendulum has a well-known homoclinic solution which corresponds to
the energy the pendulum has at the unstable equilibrium (when it is at rest on the top of the
circle). In other words, this is the solution that travels along the separatrix in the phase portrait
of the pendulum. It is well known and indeed not difficult to see that this solution is given by

θ(s) = 4 arctan (eκs) − π.

For the calculation see e.g. [22]. If we now put this solution into (27), we finally get the
2π -pulse solitonic solution

E(t, x) = 2κ sech(κ(ωt − kx)),

P (t, x) = sin(4 arctan (e2κ(ωt−kx)) − π),

D(t, x) = cos (4 arctan(e2κ(ωt−kx)) − π).

Remark 1. We note that the above construction of the solutions which stems from the
planar gravitational pendulum corresponds to the well-known reduction of the Maxwell–Bloch
equations to the sine-Gordon equation.

Our second family of solutions is simpler and it is obtained by the ansatz

g(t, x) = u(t, x) · h(t): I × S1 → SU(2),

where h(t): I → SU(2) solves the C Neumann system (T ∗SU(2), ωc,Hcn). If we insert this
into (22) and if we take into account that h(t) solves (hth

−1)t = [σ, Adh(τ )], we see that
u(t, x) must commute with σ and that it satisfies the equation

(utu
−1)t + c(utu

−1)x + [utu
−1 + cuxu

−1, Adu(hth
−1)] = 0.

Commutation of u with σ gives u(t, x) = Exp(f (t, x) · σ) for some function f (t, x):
I × S1 → SU(2). From the above equation, we get the following one for f :

(ftt + cftx) · σ + (ft + cfx) · [σ, hth
−1] = 0.

The elements σ and [σ, hth
−1] are orthogonal with respect to the Killing form on su(2);

therefore, we simply have ft +cfx = 0. This is the ‘outgoing part’ of the wave equation and its
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D’Alembert solutions are of the form f (t, x) = w(ωt − kx), where w: R → R is an arbitrary
function of one variable. Thus, the mapping

g(t, x) = Exp(w(ωt − kx) · σ) · h(t) : I × S1 −→ SU(2) (28)

is a solution of equation (22) for arbitrary function w and for every solution h(t) of our
C Neumann system. In g(t, x), the solution h(t) of the C Neumann system is rotated in
the vertical direction of the Hopf fibration S1 ↪→ SU(2) → S2

τ , given by the projection
h 
→ Adh(τ ). Rotation is caused by a harmonic wave which travels with the speed of light
c = ω/k. In the case when 〈gtg

−1, σ 〉 = const, which corresponds to the Maxwell–Bloch
equations (4), we simply have

w(ωt − kx) = ωt − kx + a, (29)

where a is a constant. Then the above discussion and expressions (6), (8), (28) and (29) in
which we neglect the inessential phase shift a, give us the following result.

Proposition 4. Let

Et + cEx = P, Pt = ED − βP, Dt = − 1
2 (EP + EP) (30)

be the Maxwell–Bloch equations. The functions

E(t, x) = ei2(ωt−kx)2((�1(t) − mq1(t)) + i(�2(t) − mq2(t))),

P (t, x) = ei2(ωt−kx)(q1(t) + iq2(t)),

D(t, x) = q3(t)

solve (30) for every solution

(q1(t), q2(t), q3(t)) : I −→ S2
τ ⊂ R

3

of the magnetic spherical pendulum with the charge equal to m. For the longitudinal relaxation
rate β, we have the expression

β = �̃m − c,

where �̃m is the value of the integral (21) along our chosen solution (q1(t), q2(t), q3(t)) of
the magnetic spherical pendulum.

5. Hamiltonian structure with the canonical symplectic form

As we stressed above, in the Hamiltonian system (T ∗LSU(2), ωc + cωm,Hmb) the canonical
symplectic structure ωc on T ∗LSU(2) is perturbed by the 2-form ωm. Let (T ∗N,ωc + σm,H)

be a Hamiltonian system, where ωc is the canonical structure on T ∗N and σm is the pull-back
of some 2-form �m on N. Being closed, the form �m is locally exact, (�m)q = dθq . Then
(again locally) a path q(t): I → N is a solution of the Hamiltonian system (T ∗N,ωc +σm,H)

if and only if it is a solution of the system (T ∗N,ωc,Hs), where the Hamiltonian function
Hs : T ∗N → R is given by the formula Hs(q, pq) = H(q, pq + θq). For the proof see [10],
p 158. This shows that the magnetic terms are responsible for forces which depend linearly on
the momentum. The geometrization of such forces is provided by the Kaluza–Klein theory,
as mentioned in the introduction.

First we shall describe the Kaluza–Klein geometrization in general. We have to consider
the magnetic terms which can be topologically non-trivial, since this is the case in the Maxwell–
Bloch system.

We recall the statement of Weil’s theorem. Let N be a manifold and let �m ∈ �2(N) be an
integral 2-form. This means that for every 2-cycle S in N the value of the pairing

∫
S
�m is an
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integer. Weil’s theorem then ensures the existence of the circle bundle φ: M → N equipped
with the connection θ , such that the curvature Fθ is precisely the 2-form �m. Proof of Weil’s
theorem can be found in many texts about the geometric quantization, e.g. in [23].

Weil’s connection θ on M decomposes the tangent bundle TqM into the horizontal and
the vertical part, TqM = Horq ⊕ Vertq . This decomposition induces the decomposition of the
cotangent space

T ∗
q M = Hor∗q ⊕ Vert∗q . (31)

Note that Hor∗q = Ann(Vertq) and Vert∗q = Ann(Horq), where Ann is the annihilator. Let
φ∗ : T ∗

φ(q)N −→ Hor∗q be the adjoint of the derivative (Dφ)q : TqM → TqN restricted to Horq .

The map φ∗ is of course an isomorphism. Let us define the lifted Hamiltonian H̃ on T ∗M by
the formula

H̃ (q, pq) = H(φ(q), (φ∗)−1(Hor∗(pq))) + (Vert∗q(pq))
2. (32)

The natural U(1)-action on M lifts to the action ρ : U(1) × T ∗M −→ T ∗M which is
Hamiltonian with respect to the canonical structure ωc on T ∗M . Let µ : T ∗M −→ u(1) = iR
be the moment map of ρ. Weil’s theorem enables us to state the following claim.

Proposition 5. Let (T ∗N,ωc + σm,H) be a Hamiltonian system and let the magnetic
term �m be an integral 2-form on N. Then the Hamiltonian system (T ∗M,�c, H̃ ) whose
symplectic structure �c is canonical and whose Hamiltonian H̃ , given by (32), is invariant
with respect to the action ρ. Its symplectic reduction (µ−1(ia)/U(1), ωsq,Hr) is the original
system (T ∗N,ωc + aσm,H).

Proof. The invariance of H̃ with respect to the action ρ is a direct consequence of the fact
that the connection θ is invariant with respect to ρ.

Whenever the action on the cotangent bundle is lifted from the action on the base space, the
moment map µ: T ∗M → iR is given by µ(q, pq)(ξ) = pq(ξN), where ξN is the infinitesimal
action on the base space. In our case, this gives µ(q, pq) = pV

q , where pV
q = Vert∗q(pq) is the

vertical part of the decomposition pq = pH
q + pV

q given by (31). This shows that H̃ induces
the function H + a2 on the symplectic quotient µ−1(ia)/U(1). This function differs from our
original Hamiltonian by an irrelevant constant.

Now we have to prove that the symplectic quotient of (T ∗M,�c) is indeed (T ∗N,ωc +
aσm). Let ϑ ∈ �1(T ∗M) be the tautological 1-form. Then dϑ = �c. For every pair of
tangent vectors X(q,pq), Y(q,pq ) ∈ T(q,pq )(T

∗M), the well-known formula for the derivative of
1-forms gives

(�c)(q,pq )(X(q,pq ), Y(q,pq )) = (X̂(ϑ(Ŷ ) − Ŷ (ϑ(X̂) − ϑ([X̂, Ŷ ])) |(q,pq ), (33)

where X̂, Ŷ are the arbitrary vector fields in a neighbourhood of (q, pq) which extend our
tangent vectors. Choose a local trivialization of T (T ∗M) and denote X(q,pq) = (Xb, Xct),
where Xb ∈ TqM and Xct ∈ T ∗

q M . The tautological form is defined by ϑ(q,pq )(Xb, Xct) =
pq(Xb). We can decompose it into the horizontal and the vertical part, ϑ = ϑH + ϑV, by
putting

ϑH
(q,pq )(Xb, Xct) = pH

q (Xb), ϑV
(q,pq )(Xb, Xct) = pV

q (Xb),

where pH
q ∈ Hor∗q and pV

q ∈ Vert∗q .

Let us choose the extension vector field X̂ of X(q,pq ) = (Xb, Xct) defined in some
neighbourhood of (q, pq) in the following way: decompose first Xb = XH

b + XV
b into the

horizontal and the vertical part. Choose a vector field extending (Dφ)q
(
XH

b

)
on N and let X̂H

b
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be its unique U(1)-invariant horizontal lift. The stipulation for the extension X̂V
b of XV

b is
the following: the restriction of the function pV

q

(
XV

q

)
on µ−1(ia) ⊂ T ∗M must be constant.

Let now X̂b = X̂H
b + X̂V

b . Define the field X̂H
ct analogously to the definition of X̂H

b using the
isomorphism φ∗, let XV

ct be an arbitrary vertical extension of XV
ct and let finally X̂ct = X̂H

ct +X̂V
ct.

We construct Ŷ in the same manner as X̂. Then we have[
X̂V

b , Ŷ V
b

] = 0 and [Ŷ b, X̂b] = [
Ŷ H

b , X̂H
b

]
. (34)

The first equation is obvious. For the second, denote by �(s) the flow of the vector field Y V
b

and by ϕ(s) the integral curve of Y V
b beginning at q. Then

[
Ŷ V

b , X̂H
b

] = d

ds

∣∣∣∣
s=0

(Dϕ(s)(�
−1(s))

(
X̂H

b (ϕ(s))
) = 0,

since X̂H
b is U(1)-invariant. The second equation of (34) now follows immediately.

From our construction of the fields X̂ = X̂H + X̂V and Ŷ = Ŷ H + Ŷ V, it also follows:

X̂V(
pH

q

(
Ŷ H

b

)) = 0, X̂H(
pV

q

(
Ŷ V

b

)) = 0 on µ−1(ia). (35)

The first equation is true because the function pH
q

(
Ŷ H

b

)
is invariant with respect to the action ρ

and the field X̂V is collinear with the infinitesimal action of ρ. The second follows from the
fact that pV

q

(
Ŷ V

b

)
is constant on µ−1(ia). We can express ϑH and ϑV slightly more explicitly:

ϑH
(q,pq )(Xb, Xct) = pH

q

(
XH

b

)
, ϑV

(q,pq )(Xb, Xct) = pV
q

(
XV

b

)
. (36)

Define the projection map �: T ∗M → T ∗N by

�(q, pq) = (
φ(q), (φ∗)−1

(
pH

q

))
,

where φ∗ is again the adjoint of the derivative Dqφ restricted to Horq ⊂ TqM . Formulae (33),
(34), (35) and (36) now give

dϑH
(q,pq )

(
X(q,pq), Y(q,pq )

) = (�∗(ωc))(q,pq )

(
X(q,pq), Y(q,pq )

)
and

i∗
(
dϑV

(q,pq )

)(
X(q,pq), Y(q,pq )

) = (
ipV

q

) · ((�∗)(σm))(q,pq )

(
X(q,pq), Y(q,pq )

)
,

where i: µ−1(ia) → T ∗M is the inclusion. Here we have used the fact that �m is the curvature
of the connection θ and is therefore given by (�m)q(Xq, Yq) = Vertq([Hor(X̃), Hor(Ỹ )]q),
where X̃ and Ỹ are arbitrary vector fields on M extending Xq, Yq ∈ TqM . Note that
σm = π∗(�m) and that

(
ipV

q

) = a is a real number.
Recall now that �c = dϑ = dϑH + dϑV. The above expressions show that for every

ia ∈ u(1), the pull-back i∗(�c) via the inclusion map i: µ(ia)−1 → T ∗M satisfies the relation

i∗(�c) = �∗(ωc + aσm).

Finally, we note that the natural projection �: T ∗M → T ∗N of the action ρ is precisely the
map �. Therefore, the above formula completes the proof of the theorem. �

Now we shall describe the Kaluza–Klein expression for the Maxwell–Bloch system. It
will be instructive to construct it directly, without referring to proposition 5.

The 2-form �m ∈ �2(LSU(2)) plays an important role in the theory of the loop group
LSU(2). It is essentially the cocycle associated with the central extension L̃SU(2) of LSU(2).

The central extension

R −→ L̃su(2) = Lsu(2) ⊕ R −→ Lsu(2)
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of the Lie algebra Lsu(2) is given by

[(ξ, λ), (η, µ)] =
(

[ξ, η],
1

2π
(ωm)e(ξ, η)

)
=

(
[ξ, η],− 1

2π

∫
S1

〈ξx, η〉 dx

)
. (37)

Since the skew form 1
2π

(ωm)e is an integral cocycle on Lsu(2), it defines the central extension

S1 −→ L̃SU(2)
φ−→ LSU(2) (38)

on the group level. Geometrically, the central extension L̃SU(2) is the U(1) principal
bundle over LSU(2), equipped with a right-invariant connection θ whose value at the identity
e ∈ L̃SU(2) is given by

θ(X̃) = θ(X, x) = x, X̃ ∈ TeL̃SU(2) = L̃su(2) = Lsu(2) ⊕ iR.

Alternatively, the connection θ is given by the right-invariant distribution in T L̃SU(2). At the
identity e ∈ L̃SU(2), it is given by

TeL̃SU(2) = L̃su(2) = Lsu(2) ⊕ R = (Horθ )e ⊕ (Vertθ )e.

The curvature of θ is equal to the 2-form i�m.
Let us denote by ρ: U(1) × T ∗L̃SU(2) → T ∗L̃SU(2) the cotangent lift of the natural

U(1)-action. We note that we only need the expression of the infinitesimalization at the
identity e ∈ L̃SU(2) of this action. However, the reader can easily find the formula for the
entire action on L̃SU(2) from the information given in [24].

Clearly, ρ preserves the canonical symplectic structure �c on T ∗L̃SU(2) and is therefore
Hamiltonian. The moment map µ : T ∗L̃SU(2) −→ iR is given by µ(g̃, pg̃) = pg̃(ξρ),

where the vector field ξρ is the infinitesimal action on the base space L̃SU(2). Let us
trivialize the tangent and cotangent bundles of L̃SU(2) by the right translations. Then for
every g̃ we have Tg̃L̃SU(2) ∼= Lsu(2) ⊕ iR and T ∗

g̃ L̃SU(2) ∼= (Lsu(2) ⊕ iR)∗. Under this
identification, we have pg̃ = (pg, ψ), ξρ = (0, 1) and therefore

µ(g̃, pg̃) = ψ.

Now we shall decompose the canonical symplectic structure �c on T ∗L̃SU(2) with respect
to the natural connection θ on the circle bundle L̃SU(2). We shall apply formula (12)
for the canonical form on the cotangent bundle over a Lie group to the case when
the Lie group is the central extension L̃SU(2). In the right trivialization, an element
(X̃b, X̃ct) ∈ T(g̃,pg̃)(T

∗L̃SU(2)) = L̃su(2) × (L̃su(2))∗ has the form

(X̃b, X̃ct) = ((Xb, xb), (Xct, xct)), Xb ∈ Lsu(2), Xct ∈ (Lsu(2))∗, xb, xct ∈ R.

Formula (12) and the Lie algebra bracket (37) of the central extension then give

(�c)(g̃,pg̃) = −〈Xct, Yb〉 + 〈Yct, Xb〉 + 〈pg, [Xb, Yb]〉
− xctyb + yctxb − ψ · 1

2π

∫
S1

〈(Xb)x, Yb〉 dx,

where pg̃ = (pg, ψ) ∈ (Lsu(2) ⊕ R)∗. Let the projection map F : T ∗L̃SU(2) → T ∗LSU(2)

in the right trivializations be given by F(g̃, pg̃) = F(g̃, (pg, ψ)) = (φ(g), pg). The above
formulae give

(�c)(g̃,pg̃) = F ∗(ωc)(g̃,pg̃) + (ωfib)(g̃,pg̃) + ψ · F ∗(ωm)(g̃,pg̃). (39)

Here ωc is the canonical structure on T ∗LSU(2). The second term ωfib is the canonical
cotangent form on the fibre of the map F. For every (g, pg) ∈ T ∗LSU(2), the fibre F−1(g, pg)

is the cotangent bundle T ∗S1 over the circle. Finally, F ∗(ωm) is the pull-back of the curvature
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ωm of the connection θ on L̃SU(2) → LSU(2). Recall that ωm is also the perturbation form
in the Maxwell–Bloch Hamiltonian system.

Consider now the symplectic quotient of T ∗L̃SU(2) with respect to the action ρ. Let
ωsq denote the induced symplectic structure on the symplectic quotient µ−1(ψ)/U(1). The
decomposition (39) proves the following result.

Proposition 6. Let µ: T ∗L̃SU(2) → R be the moment map of the natural action
ρ: U(1) × T ∗L̃SU(2) → T ∗L̃SU(2). Then for the symplectic quotient (µ−1(ψ)/U(1), ωsq)

of (T ∗L̃SU(2),�c), we have

(µ−1(ψ)/U(1), ωsq) = (T ∗LSU(2), ωc + ψωm).

The above proposition gives us now the expression of the Maxwell–Bloch Hamiltonian
system in terms of a canonical symplectic structure.

Theorem 2. Let (T ∗L̃SU(2),�c, H̃ ) be the Hamiltonian system on T ∗L̃SU(2), where �c

is the canonical cotangent symplectic structure and the function H̃ mb : T ∗L̃SU(2) −→ R is
given by the formula

H̃ mb(g̃, pg̃) = 1
2‖pg̃‖2 + 〈〈σ, Adg̃(τ )〉〉,

with σ = 1
2 diag(i,−i) ∈ su(2) and τ ∈ Lsu(2) an arbitrary loop. Then the moment map

µ: T ∗L̃SU(2) → R of the U(1)-action ρ is an integral of the system (T ∗L̃SU(2),�c, H̃ mb).
For the reduced Hamiltonian system, we have

(µ−1(ψ)/U(1), ωsq,Hsq) = (T ∗LSU(2), ωc + ψωm,Hmb),

where (T ∗LSU(2), ωc + ψωm,H) is the system whose equation of motion is

(gtg
−1)t + ψ(gtg

−1)x = [σ, Adg(τ )].

When ψ = c, this is precisely the Maxwell–Bloch equation.

Remark 2. The Kaluza–Klein charge of the additional degree of freedom in L̃SU(2) is ψ .
We can write the above equation in the form

(gtg
−1)t (x) = ψ

1

ε
(gtg

−1(x − ε) − gtg
−1(x + ε))|ε→0 + [σ, Adg(x)(τ (x))].

This shows that the charge ψ is the strength of the magnetic interaction between the
neighbouring C Neumann oscillators in the chain. An even clearer description says that
the momentum π is equal to the speed of light in the medium. The fact that π is an integral of
the extended system (T ∗L̃SU(2),�c, H̃ ) coincides with the fundamental physical law which
says that the speed of light ψ = c in the medium is constant.

Proof of theorem 2. We only have to check that the Hamiltonian H̃ is invariant with respect
to the U(1)-action ρ. For the kinetic energy, we have

‖pg̃‖2 = ‖(pg, ψ)‖2 = ‖pg‖2 + ψ2,

which is clearly invariant. In the potential energy term, we have the adjoint action of L̃SU(2)

on an element from (L̃su(2)). The adjoint action is given by the formula

Adg̃(β̃) = Adφ(g̃)(β, b) =
(

Adg(β), b − 1

2π

∫
S1

〈g−1gx, β〉 dx

)
.

This can be seen from the fact that the extension L̃SU(2) of LSU(2) is central and from
formula (37) for the Lie bracket in L̃su(2). The natural inclusion of the element σ ∈ su(2)
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into the group L̃su(2) has the form i(σ ) = (σ, 0) ∈ Lsu(2)⊕ R. Recall that the inner product
on L̃su(2) is given by

〈〈(α, a), (β, b)〉〉 =
∫

S1
〈α, β〉 dx + a · b. (40)

From this we see 〈〈σ, Adg̃(τ (x))〉〉 = ∫
S1〈σ, Adφ(g̃)(τ (x))〉 dx. This expression is clearly

invariant with respect to the action ρ. (The orbits of ρ are φ−1(g).) The statement of the
theorem now follows directly from proposition 6. �

In [26], the authors describe a Hamiltonian structure of the Maxwell–Bloch equation,
but their structure is different from the one constructed above. A quick way to establish
the nonequivalence of the two structures is to observe that the symplectic structure in [26]
does not include the derivatives of the variables with respect to x co-ordinate, while our
symplectic structure does. The fact that the Maxwell–Bloch equations are endowed with two
nonequivalent Hamiltonian structures is of course very important. We intend to study this
topic in another paper.

6. Lagrangian structure of the Maxwell–Bloch equations

In this section we shall investigate the Lagrangian structure of equation (9). To simplify the
notation we put c = 1. The fact that the magnetic term ωm ∈ L̃SU(2) is topologically non-
trivial will play a crucial role. The Lagrangian expression of systems with non-trivial magnetic
terms was studied by Novikov in [29]. Although we focus on the Maxwell–Bloch system, our
construction of the Lagrangian formulation works for any Hamiltonian system with an integral
non-trivial magnetic term. Our construction is different from the one described in [29]. The
essential ingredient in our approach is the Kaluza–Klein extension, which makes the problem
quite straightforward.

The Lagrangian expression of the Maxwell–Bloch equations on the original, non-extended
configuration space LSU(2) is more intricate, if less general. In particular, it works only for
the temporally periodic solutions of the Maxwell–Bloch equations. It has essentially the
same structure as the WZWN model which was introduced by Witten in [27, 28]. Again,
our construction could be applied to arbitrary Hamiltonian systems with non-trivial magnetic
terms.

We shall start by applying the Legendre transform to the Kaluza–Klein expression
(T ∗L̃SU(2),�c, H̃ mb) of the Maxwell–Bloch system. Let T L̃SU(2) be the tangent bundle.
As before, we will work in the trivialization of T L̃SU(2) by the right translations. On the
Lie algebra L̃su(2) = TeL̃SU(2), we have the inner product given by (40). By 〈〈−,−〉〉g̃ we
denote the value on Tg̃L̃SU(2) of the right-invariant metric on L̃SU(2) whose value at the
identity is given by (40). Note that the metric 〈〈−,−〉〉g̃ is not bi-invariant, since the inner
product (40) is not Ad-invariant. We can use our metric for the identification

T ∗
g̃ L̃SU(2) = {pg̃ · (̃g−1)∗ = 〈〈g̃t g̃

−1,−〉〉, g̃t g̃
−1 ∈ T L̃SU(2)}.

Let now the Lagrangian L: T L̃SU(2) → R be given by

L(g̃, g̃t ) = 1

2
〈〈g̃t , g̃t 〉〉g̃ −

∫
S1

〈σ, Adφ(g̃)(τ (x))〉 dx. (41)

In the right trivializations, the Legendre transformation FL : T L̃SU(2) −→ T ∗L̃SU(2) is
given by FL(g̃t g̃

−1) = pg̃ · (̃g−1)∗ = 〈〈g̃t g̃
−1,−〉〉. This gives us the following theorem.
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Theorem 3. Let the path γ (t) = (g̃(t), pg̃(t)) : I −→ T ∗L̃SU(2) be a solution of the
Hamiltonian system (T ∗L̃SU(2),�c, H̃ ) and let proj : T ∗L̃SU(2) → L̃SU(2) be the natural
projection. Then the path

proj (γ (t)) = g̃(t) : I −→ L̃SU(2)

is an extremal of the Lagrangian functional

L(g̃(t)) =
∫

I

L(g̃(t), g̃t (t)) dt, (42)

where the function L is given by (41).

We shall now take a closer look at the closed extremals of the Lagrangian functional (42);
that is, we will be interested in the loops g̃(t) : S1 −→ L̃SU(2) for which the value L(g̃(t)) is
minimal. We shall see that the closed extremals of (42) can be characterized as the extremals
of a Lagrangian functional on the non-extended loop group LSU(2). But this Lagrangian will
be of a non-standard kind in a similar way that the WZWN functional is. We will prove the
following theorem.

Theorem 4. Let g(t) : S1 −→ LSU(2) be a loop in LSU(2). Let D ⊂ R
2 be a disc whose

boundary is our circle, ∂D = S1, and let ĝ : D −→ R be an extension of g to the disc D.
Then

L(g(t)) =
∫

S1

(
1

2
‖gtg

−1‖2 − 〈〈σ, Adg(t)(τ )〉〉
)

dt +
∫

ĝ(D)

ωm (43)

is a well-defined map

L : {Loops in LSU(2)} −→ R/Z = S1.

Furthermore, a loop g(t): S1 → LSU(2) is an extremal of L if and only if it is a solution of
the Maxwell–Bloch equation

(gtg
−1)t + (gtg

−1)x = [σ, Adg(τ )].

Proof. The loop group LSU(2) can be endowed with the structure of a Banach manifold
in several different ways (see [24, 25]). Throughout this paper, we assume that LSU(2) is
equipped with a suitable Banach manifold structure which makes ωm a smooth 2-form. Let
{Uα;α ∈ A} be an open covering of LSU(2) by contractible open sets Uα . Consider the
family of Hamiltonian systems

(
T ∗Uα, ωα

c + ωα
m,Hα

mb

)
, where ωα

c + ωα
m denotes the restriction

of ωc + ωm to T ∗Uα and Hα
mb is the restriction of the Hamiltonian function Hmb. The form

ωm is closed on LSU(2), therefore its restriction to any contractible subset Uα is exact by the
Poincaré lemma. We have ωα

m = dθα .
Recall now the momentum shifting argument for the Hamiltonian systems with magnetic

terms. Let M be a manifold and let Tθ : T ∗M → T ∗M be a map defined by the
formula Tθ (q, pq) = (q, pq − θq). Let H : T ∗M → R be a Hamiltonian function and let
Hθ(q, pq) = H(q, pq + θq). Then Tθ pulls the function Hθ back to H and the canonical form
ωc back to the magnetically perturbed form ωc + dθ . It is clear that a path q(t): I → T ∗M is a
solution of the Hamiltonian system (T ∗M,ωc + dθ,H) if and only if it is also a solution
of the Hamiltonian system (T ∗M,ωc,Hθ ). Thus, for every α ∈ A, the Hamiltonian
system

(
T ∗Uα, ωα

c + ωα
m,Hα

mb

)
is equivalent to the Hamiltonian system (T ∗Uα, ωc,Hα),

where Hα: T ∗U → R is given by Hα(g, pg) = (Hmb)/Uα

(
g, pg + θα

g

)
. By means of

the Legendre transformation, we can now recast our restricted Hamiltonian systems into
the Lagrangian form. We have the following result. A path g(t): I → Uα is a solution of the
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Hamiltonian system (T ∗Uα, ωc,Hα) ∼=
(
T ∗Uα, ωα

c + ωα
m,Hα

mb

)
if and only if it is an extremal

of the Lagrangian functional Lα : {paths on Uα} → R given by

Lα(g(t)) =
∫

I

(
1

2
‖gtg

−1‖2 + θα(ġ(t)) − 〈〈σ, Adg(t)(τ )〉〉
)

dt.

We can rewrite this Lagrangian somewhat more invariantly as

Lα(g(t)) =
∫

I

(
1

2
‖gtg

−1‖2 − 〈〈σ, Adg(t)(τ )〉〉
)

dt +
∫

g(I )

θα.

Note that θα is determined only up to a closed 1-form. But on the contractible Uα , every
closed 1-form is also exact. For every 0-form (i.e. a function) β on Uα , we have∫

g(I )

dβ =
∫

∂g(I )

β = β(g(b)) − β(g(a)).

Therefore, the Lagrangians Lα corresponding to various possible choices of θα differ only by
irrelevant constants when the endpoints of the paths g(I) are fixed, and they do not differ at
all when we consider the closed paths g(S1).

Now we will show that the family of local Lagrangians Lα : {paths on Uα} → R gives
rise to a global Lagrangian

L : {loops on LSU(2)} −→ R/Z = S1.

Let g: S1 → LSU(2) be a loop in LSU(2) and let ĝ: D → LSU(2) be an extension of g

on the disc D, bounded by our S1. Then ĝ(D) is a two-dimensional submanifold in LSU(2)

whose boundary is the loop g(S1). Since ĝ(D) is compact, it is covered by a finite subfamily
{Uα;α ∈ A′} of the covering {Uα}α∈A. The disc D is two dimensional, therefore we can
assume that at most three different Uα have non-empty intersection. Let

⋃
α∈A′ Dα = D be

a partition of the disc D into a union of curvilinear polygons Dα , such that for every α ∈ A′

we have ĝ(Dα) ⊂ Uα and such that the interiors of the polygons Dα are disjoint. A suitable
partition

⋃
α∈A′ Dα = D is given by the nerve of the covering {Uα;α ∈ A′}. In the group of

one-dimensional chains in LSU(2), we then have

g(S1) = ∂ĝ(D) =
∑
α∈A′

(∂ĝ(Dα)).

For every α ∈ A′, the theorem of Stokes gives
∫
∂ĝ(Dα)

θα = ∫
ĝ(Dα)

ωm. But unlike θα , the form
ωm is globally defined. Therefore, we can define

L̆(g(S1)) =
∫

S1

(
1

2
‖gtg

−1‖2 − 〈〈σ, Adg(t)(τ )〉〉
)

dt +
∫

ĝ(D)

ωm.

This functional is of course dependent on the choice of the extension ĝ of the map
g: S1 → LSU(2). Let ǧ: D → LSU(2) be another extension of g. Then the chain ǧ(D) −
ĝ(D) is a smooth map

ǧ(D) − ĝ(D) = g̊(S2) : S2 −→ LSU(2)

of a 2-sphere into LSU(2). Now, LSU(2) is diffeomorphic to SU(2) × �SU(2),
where �SU(2) denotes the group of the based loops in SU(2). Since for the singular
homology with integer coefficients we have H3(SU(2)) = H3(S

3) = Z, we also get
H2(�SU(2) ∼= H3(SU(2)) = Z, and finally H2(LSU(2) = H2(SU(2))×H2(�SU(2)) = Z.
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The form ωm is closed, but not exact. Therefore,∫
ǧ(Dα)

ωm −
∫

ĝ(Dα)

ωm =
∫

ǧ(Dα)−ĝ(Dα)

ωm =
∫

g̊(S2)

ωm ∈ Z

and, in general, this integer is different from zero. This shows that for different choices of the
extension of the loop g on the disc D the values of the functional L̆ : {loops on LSU(2)} → R

can differ by integers. Therefore, the composition

{loops on LSU(2)} L̆−→ R
κ−→ R/Z = S1,

in which κ: R → R/Z = S1 is the natural projection, is independent of the choice of the map
ĝ extending the loop g. This proves that the Lagrangian functional L = κ ◦ L̆ given by the
formula

L(g) =
∫

S1

(
1

2
‖gtg

−1‖2 − 〈〈σ, Adg(τ )〉〉
)

dt +
∫

ĝ(D)

ωm

is a well-defined single-valued map

L : {loops on LSU(2)} −→ R/Z,

as we have claimed in the statement of the theorem.
Finally, we have to show that the extremals of L are precisely the closed solutions of

the Maxwell–Bloch Hamiltonian system (T ∗LSU(2), ωc + ωm,Hcn). But this is clear from
our construction of L. Inside every Uα , we have L/Uα

= Lα. Let g(t) be an extremal of L.
Then its restriction to Uα is an extremal of Lα . We have shown that the corresponding path
(g(t), (gt )

�) in the cotangent bundle T ∗Uα is an integral path of the Hamiltonian vector field
Xα defined by the Hamiltonian system

(
T ∗Uα, ωα

c + ωα
m,Hα

cn

)
. But, recalling that Uα is open

in LSU(2), we know the Hamiltonian vector field Xα coincides with the restriction of the
Hamiltonian vector field X of our original Hamiltonian system (T ∗LSU(2), ωc + ωm,Hcn),
which completes the proof of our theorem. �

Remark 3. The Lagrangian L: {paths in T LSU(2)} → S1 is well defined only for closed
paths, i.e. for temporally periodic solutions. For the Lagrangian description of the general
non-periodic solutions, the extended configuration space L̃SU(2) must be used. The interested
reader can compare our construction to the results in [30].

We shall conclude this paper with a comparison between the Maxwell–Bloch system
and the Wess–Zumino–Witten–Novikov action. Let X ⊂ R

3 be a closed two-dimensional
orientable surface and let f : X → SU(2) be a smooth map. Denote by B the three-dimensional
manifold bounded by the surface X; that is, ∂B = X. The Wess–Zumino–Witten–Novikov
action is a two-dimensional conformal field theory given by the Lagrangian

Lwzwn(f ) = 1

4π

∫
X

(∇f )f −1 +
1

2π

∫
B

f̂ ∗(�),

where f̂ : B → SU(2) is an extension of f : X = ∂B → SU(2) and � ∈ �3(SU(2)) is the
right-invariant 3-form whose value at the identity is given by

�(ξ1, ξ2, ξ3) = 〈ξ1, [ξ2, ξ3]〉, ξ1, ξ2, ξ3 ∈ TeSU(2) = su(2).

In other words, the form � is the volume form on SU(2) = S3 with respect to the natural round
metric. One can immediately see that Lwzwn is defined only up to addition of integers. Indeed,
for two different choices f̂ and f̌ of extensions, the chain f̌ (B) − f̂ (B) is a representative of
a class in the homology group H3(SU(2)) = H3(S

3) = Z. Since � is the volume form, it is
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closed, but not exact, and therefore [�] is a non-zero element in H 3
DR(SU(2)). Thus, we have∫

(f̌ −f̂ )(B)
� ∈ Z, as claimed.

Let now X be a sphere S2 or a torus T 2. Both can be parametrized as closed paths of
simple loops in obvious ways. We will denote the parameter of the closed path by t ∈ S1 and
the parameter on the simple loops by x ∈ S1. The WZWN action for f (t, x): X → SU(2)

can then be written as

Lwzwn(f ) = 1

4π

∫
X

(‖ftf
−1‖2 + ‖fxf

−1‖2) dt dx +
1

2π

∫
f̂ (B)

�.

We shall now compare the topologically non-trivial terms of the WZWN action and
of the Maxwell–Bloch system. The relation between the forms � ∈ �3(SU(2)) and
ωm ∈ �2(LSU(2)) is described by the following proposition. (See [30] for proof.)

Proposition 7. Let ev: S1 × LSU(2) → SU(2) be the evaluation map ev(u, g(x)) = g(u)

and let τ : �3(SU(2)) → �2(LSU(2)) be defined by τ(α) = ∫
S1 ev∗(α). Then

ωm = τ(2π�) − dβ, (44)

where β is the 1-form on LSU(2) given by

βg(Xg) = 1

4π

∫ 2π

0
〈gxg

−1, Xgg
−1〉 dx, Xg ∈ TgLSU(2).

In particular, [τ(�)] = [ωm] ∈ H 2(LSU(2)).

If we put formula (44) into expression (43) for the Lagrangian of the Maxwell–Bloch
system, we get

L(g) =
∫

S1

(
1

2
‖gtg

−1‖2 − 〈〈σ, Adg(τ (x))〉〉
)

dt dx +
∫

ĝ(D)

τ (2π�) −
∫

g(S1)

β. (45)

In the third term above, we have used Stokes’ theorem and the fact that ∂ĝ(D) = g(S1). A loop
g: S1 → LSU(2) in the loop group LSU(2) can be thought of as a map f (t, x): X → SU(2),
where X is a sphere or a torus. Formula (45), expressed in terms of the maps f rather than of
the loops g, has the form

A(f ) =
∫

X

(
1

2
‖fxf

−1‖2 + 〈fxf
−1, ftf

−1〉 − 〈σ, Adf (τ (x))〉
)

dt dx +
∫

f̂ (B)

�, (46)

in which the topologically non-trivial term is the same as in the WZWN action.

7. Conclusion

In this paper, a new Hamiltonian structure of the Maxwell–Bloch equations is constructed and
some of its properties are studied. Our Hamiltonian structure stems from the representation of
the Maxwell–Bloch equations as the equation of motion for a continuous chain of C Neumann
oscillators parametrized by the single spatial variable x. The interaction among the oscillators
is of magnetic type. This means that the acceleration of the oscillator on the location x0

is influenced by the momenta rather than the positions of the neighbouring oscillators. Our
Hamiltonian structure is of the form (T ∗LSU(2), ωc +cωm,Hmb), where ωm is the pull-back of
the form ω̃m on the loop group LSU(2) via the natural projection π : T ∗LSU(2) → LSU(2).
The magnetic nature of the interaction among the oscillators is reflected in the perturbation
cωm of the canonical symplectic structure ωc. The form ω̃m is topologically non-trivial, but it
is integral. It is in fact a generator of the cohomology group H 2(LSU(2); Z) ∼= Z. By Weil’s
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theorem, it is therefore the curvature of a connection on the topologically non-trivial principal
U(1)-bundle L̃G → LG. The total space L̃SU(2) is precisely the central extension of the
loop group LSU(2). Therefore, the system (T ∗LSU(2), ωc + cωm,Hmb) is the symplectic
quotient of the system (T ∗L̃SU(2),�c, H̃ ), where �c is the canonical symplectic form on
T ∗L̃SU(2) and H̃ is the suitable Hamiltonian. The value of the moment map at which the
quotient is taken is equal to c, that is, to the speed of light in the medium. In other words, the
system (T ∗L̃SU(2),�c, H̃ ) is the extension of (T ∗LSU(2), ωc + cωm,Hmb) in the sense of
the Kaluza–Klein theory. The interaction force is geometrized on the U(1)-bundle L̃SU(2)

over LSU(2). This is reflected in the fact that the magnetically perturbed symplectic structure
ωc +cωm on LSU(2) lifts to the canonical structure on L̃SU(2). The conserved Kaluza–Klein
charge in our case is the speed of light in the medium.

The Kaluza–Klein extension yields an easy way to find the Lagrangian for the Maxwell–
Bloch equations. This Lagrangian is defined on the space of paths in the central extension
L̃SU(2). We then construct the Lagrangian on the original configuration space LSU(2).
Here the non-trivial topology of the situation plays the crucial role. Namely, the Lagrangian
contains the Wess–Zumino–Witten–Novikov term. Therefore, it is well defined only for
temporally periodic solutions of the Maxwell–Bloch equations, while the Lagrangian on the
Kaluza–Klein extension L̃SU(2) is well defined for arbitrary solutions.

We construct two families of solutions of the Maxwell–Bloch equations. One of these
families nicely illustrates the relation between the Maxwell–Bloch and the C Neumann system.
Our solutions are non-linear travelling waves whose constituent oscillator is the magnetic
spherical pendulum in the same way as the harmonic oscillator is the constituent oscillator of
the harmonic travelling waves. By the expression ‘magnetic spherical pendulum’ we call an
electrically charged spherical pendulum moving in the field of a magnetic monopole situated
at the centre of our sphere. The magnetic spherical pendulum is a symplectic quotient of a
particular kind of circularly symmetric C Neumann system, the kind that figures in this paper.
The well-known 2π -soliton occurs as a special case of our family of solutions. In this case,
the constituent oscillator has to be reduced to the planar gravitational pendulum at the critical
energy.

Our representation of Maxwell–Bloch equations as a chain of interacting oscillators
and the associated Hamiltonian structure offer a starting point for many lines of further
investigation. It is easily seen that this Hamiltonian system is invariant with respect
to the natural action of the loop group LU(1). More generally, Hamiltonian systems
(T ∗LG,ωc + cωm,Hgmb) are invariant with respect to the actions of LH , where H are suitable
subgroups of G. These actions yield various symplectic quotients. In a forthcoming paper, we
intend to study some of these quotients and their properties. This topic is directly connected
with the multilevel resonant light–matter interaction studied by Park and Shin in [16]. Another
interesting topic is partial discretizations of the Maxwell–Bloch equations. If we discretize
them with respect to the spatial variable, we get a discrete system of interacting C Neumann
oscillators. In [32], we construct a large number of conserved quantities of such many-body
systems. We intend to address different topics concerning the geometry and dynamics of such
discretizations in future papers.
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